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Abstract

Each of N customers must select one of K commuter routes daily.

Each commuter route is represented as a series of M/D/i queuing stations

with fixed travel times between stations. In the basic model, all

customers arrive at the start of their selected route simultaneously;

) results which are optimal for the basic model are shown to be nearly

optimal under a variety of more realistic arrival assumptions. In the

basic model, the total wait on route k on any day when nk customes use

2it is shown to be a + knk

For the basic model three solutions are found and compared: (1)

the deterministic social optimum, an assignment of individual customers

to routes minimizing total wait per day, (2) the best common mixed

strategy minimizing average total wait per day when customers' individual

average waits must all be equal and (3) the equilibrium common mixed

strategy that would be used by e-iery customer acting in self-interest.

The three solutions differ systematically. Individuals using (3) use

routes k with low ak + Bk with higher frequency than in (2) or (1).

Since ak + Bk is the total wait on route k if only one customer uses it,

self-interested individuals overload those routes which would be fastest

in the absence of congestion.
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Section 1 introduces the model assumptions. In Section 2 a deter-

ministic social optimm is found. Section 3 explores mixed strategies

and compares them to the deterministic social optimum. Best mixed

strategies within certain classes can be found by solving revised deter-

ministic social optimum problems by the methodology of Section 2.

Section 4 examines more general arrival assumptions.

1. Assumptions

Many authors (e.g. in [1] and references 1, 3, 8-11, of [1]) have

shown that customers acting in their self-interest in deciding whether

or not to enter a queuing facility tend to cause more congestion at the

facility than would be socially desirable. This is a result of an

individual's failure to consider the inconvenience caused to later

arrivals when he/she enters. In all of the above models customers

decide whether or not to enter a queuing system based on a comparison of

their perceived service reward and cost of waiting. In our model,

customers will not have a choice of entering or not; they must enter the

system but will have a choice of server.

Choosing a daily commuter route is perhaps the most appropriate

example of our model. Assumptions are:

(1) There is a finite calling population of known size, N.

(2) There are K service facilities, (1,2,...,K).

(3) Each customer is required to choose a service facility (e.g.,

commuter route) daily.

(4) The arrival pattern of customers and the resulting congestion

is concentrated at one period of the day. Steady state behavior
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which applies to any time of day cannot be analyzed. However,

the long run tendencies of customers to make certain choices

of facility from day to day can be studied.

(5) If nk customers choose facility k on any day, the total number

of customer hours spent in facility k is given by the simple

expression

Qknk + knk2 (1)

where a k,8k are known positive constants.

(6) Customers have knowledge of assumptions (1)-(5) but must

choose a service facility without knowledge of any other

customers' choices.

In the context of choosing a comumter route, the following simple

model gives rise to a total delay of the form aknk + knk2 when nk

customers select route k. Although highly idealized, this model may

provide some justification for using an expression as simple as aknk +

8knk2 to approximate the total delay on a real commuter route.

We view route k as a system of single server queuing stations in

series with constant service times and unlimited queue capacity.

Regardless of the congestion level, there are also known constant travel

times between stations. Along route k servers 1.2, ...,ck provide

services of constant duration aklak2,..,akck respectively. Constant

travel times tkl and {tki i-2,...,ck} are required to travel from the

start of route k to server 1 and from server i-1 to server i (i-2,...,ck).

Figure 1 illustrates these assumptions. In addition, if nk customers

IL



3

select route k, it is assumed that all n k customers arrive at the start

of the route at the same instant.

Figure 1: Approximate Model of a Comuter Route

travel times: tkl tk2 tk,ck-l tk,c

start ... finish

service times: akl ak2 ak, k-l ak,Ck

Figure 2: Equivalent Model

travel time: Tk -ak

start .. finish

service time: ak

Generalizations of this last, rather restrictive assumption are discussed

in Section 4. Our solutions will remain nearly optimal provided that

arrivals occur at a reasonably fast rate. Precise conditions are given

in Section 4.

The model of route k in Figure 1 can be further simplified. Let

ak - maximum {akil; k is the service duration of the slowest (or bottle-

ckl_<i<c k  ck

neck) server on route k. Let Tk-iE (tk'i+ak'i); Tk is the total time

to pass through route k for a customer vho encounters no queuing

delays at any server. If nk customers enter route k at time 0, they

i
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leave route k ak time units apart at times Tk, Tk ak, Tk+2ak....

Tk+(nk-l)ak. This departure pattern results from the fact that if

customers arrive at the i-th server at times t, t+a, t+2a,...,

t+(nk-l)a, then they arrive at the i+1st server at times

t+a k,i + t k, i+t ' t+a k, i~tk, i+t ma x ( a k ,' t+aki + t k,i+l+ 2 max {a, k ,

t+ak,l+tk, +l+(nk-l) max {a,ak, i}.

The same sequence of departure times Tk, Tk+akTk+2ak,...,

Tk + (nk-l)ak would result from the equivalent model shown in Figure 2.

The total delay is nkTk+O. 5(nk-l)nkak, an expression of the form (1).

In Figure 2, the average total delay is unchanged if we assume that

the server provides independent services of random duration with expected

value ak. We henceforth assume that route k can be represented by a

single server with average service duration ak and a fixed travel time

Tk -ak leading up to the server. The expected total delay encountered by

nk customers is then nk(Tk-k)+O.5nk(nk~l)ik -nTk +. 5(nk-l)nkak, an

expression of the form (1) with

k - Tk-ak/2. 'k = akI2  (2)

Three solutions will be found and compared. In Section 2 the

deterministic social optimum problem (DSOP) is solved. This solution

assigns individual customers to routes to minimize the expected total

wait for all customers. It is discriminatory in the sense that customers

assigned to route k may have longer or shorter average waits than customers

assigned to route k'. Customers acting in their self-interest could not

be expected to follow such an assigment. Such a social optimum could
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be attained only if customers were forced by a dictator to adhere to

their assigned routes or if a set of incentives (tolls and rebates)

could be provided which would convince any customer that it would be

unwise to deviate from his assignment. Although such methods of enforcing

the DSOP solution may be unrealistic, the DSOP solution is important

because: (1) other solutions will be found by solving revised DSOP

problems by the same methodology, (2) the objective function value

provides a lower bound on the overall average wait, a benchmark for

comparison with other solutions and (3) the DSOP solution allows a

behavioral comparison with other solutions. When given free choice,

individuals cause excess congestion in certain routes, less in others in

comparison to the DSOP solution; roughly speaking, the routes which

become over-congested are those with small Tk values, i.e., the routes

which would be fastest at (off-peak travel) times when there are no

delays due to queuing. These behavioral differences will be stated more

precisely below.

The second solution (found in Section 3) is the common mixed

strategy which minimizes expected total wait over all common mixed
K

strategies. A mixed strategy (xlx 2,Z"'1xK),k xk~l, x >0, is a
k-l

probability distribution over routes. By a common mixed strategy

(x ,x2,...,xK) we assume that every customer chooses a route on each

day by drawing from this probability distribution. Since each customer

has exactly the same available information at the time he makes a

decision, it seems reasonable that all customers should adopt a common

strategy. The numbers of customers (Nl,N2,...,NK) using routes 1,2,...,K

on any day has a multinomial distribution with parameters N,X ,X2

i
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representing N independent trials with K possible outcomes where outcome

k has probability xk on any trial. The best common mixed strategy

(BCMS) solution has one advantage over the DSOP solution: the average

wait is the same for every customer on any day. Thus this solution is

more equitable. However, it is typically not an equilibrium solution;

any individual acting in self-interest would be motivated to use a

different strategy if he knew that all others would stick to (xl,x2,...,xK).

In the absence of an incentive mechanism or a dictator, the

instability of the BCMS solution makes its objective function value

(overall expected wait) impossible to attain by N individuals acting in

self-interest.

The third solution (found in Section 3) is the common mixed strategy

equilibrium (CMSE). This is the common mixed strategy that would be

used by self-interested customers without any tolls, rebates or other

incentives. An equilibrium strategy has the property that no single

customer would be motivat-d to deviate from it if he knew that all other

customers would adhere to it. The average overall wait is naturally

higher with this solution than with DSOP, or BCMS solutions.

Table 1 gives four numerical examples illustrating differences

between DSOP, BCMS and CaSE solutions. In these examples with K-2,

N=O,O00, the average number of customers using route 1 varies sub-

stantially. The average wait per customer varies to a lesser extent but

can be as much as 8.25 percent higher in the CMSE solution when compared

with the DSOP. Notice that the average numbers of customers using route

1 in the DSOP and BCMS solutions are almost identical and the fact that

the actual number of customers using route 1 is random in the BCMS case

adds little to the average wait per customer.
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In Section 2 the deterministic social optimum problem (DSOP) is

solved; in Section 3 mixed strategy solutions (BCMS and CMSE) are found

and all 3 solutions compared. Our main result is that self-interested

individuals reach an equilibrium (CMSE solution) which tends to overload

routes k with sufficiently high values of Tk when compared to the BCMS

solution. Thus self-interested customers make too much use during rush

hour of the routes which would be fastest when no one else is on the

road. Compared to the DSOP solution, self-interested customers overload

routes k with sufficiently high values of Tk+(N-l)ak/(2N+2).

2. Deterministic Social Optimum Problem (DSOP)

In the analysis below we ignore the fact that nl,n2 .. .,nK must

all be integers. Under social optimization nl,n2,... ,nK must be set

to minimize total delay in all systems combined. The DSOP is then the

nonlinear programming problem:

K 2
minimize E (nknk+akn)

K
subject to E nk -N (3)

k=ffk

nk > 0, k 1,2,...,K

The optimal solution (n 1,n2,.. .,nK) is easily found by writing a

Laggrangean

K 2 K
Z(nl~n 2,...,KX)= E (aknk+ knk) - E nk-N)

k-1 k-i
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and evaluating partial derivatives

aZ(nln2 ,. ..,nk,A)W__1 n 29 _nk *X = ak+2 8knk-A. (4)

(n1n 2,...,nk) must satisfy

k+2 aknk-X = 0 if O<nk<N (5)

ak-A > 0 if nk=O. (6)

From (5) and (6) nfi[A*-a+k] /2ak where a --max {a,01. If
, K

nA()[-A~k]+/nk, then A is the unique value of X where E nk
K k 1

But E nk(X) is a piecewise linear convex non-decreasing function of X
k=l

with kinks at alta 2 9...,aK. Thus X (and hence nl,n2,...,nK) can be

found by a simple search.

3. Mixed Strategy Solutions

Under the DSOP solution (nl,n2,...,nK) the total wait in facility k

* *2
is Qknk+0knk ; thus the average wait per customer in facility k is

ak+knk' Thus a customer would be tempted to switch from facility k to

facility t if ak+*knk>ae+t(nt+l). Since (5) implies ak + 2Bk n = az

+ 2Bent, a customer would be tempted to switch from k to L if ak + In

+ z(ak + 2knk) >a + It(n + 1) + z(a P + 2Stnt) where z is an arbitrary

, ' . . .. . . ... . .. ... ..... . . .. i . ... ... .. . . ... .. . . ..
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constant. Setting z 1 - and multiplying both sides by -1 yields the

equivalent condition: 6 knk < B (n. - I). Setting z = -0.5 and multiplying

both sides by 2 yields an alternative equivalent condition: ak > al +

2B .

There are typically one or more equilibria involving different

mixed strategies for different customers. However, since every customer

has the same information, we concentrate on the case where all customers

use the same mixed strategy. First, we can find the BCMS, the conmmon

mixed strategy which minimizes average wait for all customers. If every

customer uses this strategy, an equilibrium generally does not result.

The BCMS generally differs from the strategy (nI/N,n2/N,...,nK/N) which

one might consider based on the DSOP allocation (nl,n2 ,...,nK). If

each customer uses the mixed strategy (xx 2,.. .,XK), then the actual

number of customers selecting routes 1,2,...,K is a multinomial random

vector (XI,X 2,...,XK) with E(Xk)=Nxk, Var (Xk)=Nxk(l-xk) and

2 2E( )=Nxk+N (N-l)x . We then wish to find (xl x2 1 .,xK) to minimize

K K

Et Ockkktk f ak (Xk)+Bk cx)}
k=l k=l

Substituting yields

K K
E {akNxk+0k[Nxk+N(N-l)x]} = E ( k+0k)Nxk+N(N-l)x k }

k=l k=l

Letting nk = Nxk gives

K2
Kl { (ak-k)nk+(N-l)nkMk/N}.

kal
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This can be solved by finding the DSOP solution (n1*n29...nK) when

ak'ak+Bk, B k-(N-i) Bk/N (7)

and then finding (xlx 2 ,...,xK) - (nl/N,n2IN,...,nK/N).

To find the common mixed strategy equilibrium (x1,x2,.. . ,x)

assume that customers 2 through N use this strategy. The number of

these customers selecting routes 1,2,...,K respectively on any day is

thus a multinomial random vector (NlN2 ,...,NK) with E(Nk)=(N-1)^ . By

using route k with nk others present, customer 1 can attain a conditional

average wait of Tk-ak+(l+.5nk)ak-Tk+.Snkak. Since E(Nk)-(N-1)x,

customer 1 can attain an average wait of Tk+.5(N-l)xkak by selecting

route k. Using (2)

Tk+. 5(N-l)xkak k+Bk+(N-l ) xkak+[l+(N-l)xk] k (8)

For an equilibrium we must have equal average waits on every route used
A

(i.e. with xk>O). Thus

c+[+-)klk - 0 if 0<x..l (9)

If there are unused routes (Xk=O), then no positive value of can
A

attain an average wait of A.
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Thus

ck+BkA > 0 if xk0(10)

Conditions (8)-(9) are analogous to conditions (5)-(6). In fact, this

equilibrium can be found by solving a DSOP with

%-kak Bk - (N-1)0 k/2N (1

Denoting the solution to this DSOP by (n l'n 2,...,nd we then have

(xl~x2 .-. ,x,) ,(n,/N~n IN,...,nKIN).

The mixed strategy solutions BCMS and CMSE can be found by solving

revised DSOP's with parameters given by (7) and (11) respectively. To

compare DSOP solutions to different problems, recall that the original

DSOP solution (n1n2 .,K satisfies (5) and (6) and thus

n k - a k) /20B (12)

where X is the unique value such that

K * +
E (A- k] /2B k - N (13)

From (12) and (13) it is easy to verify that a revised DSOP with a k-cako

0 k col,c>O has the same solution (n 1 n 2 "..,nK) found from (12) and (13)
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* *
by replacing ak, Ok and A by cak , cBk and cX respectively. We thus

state Lemma 1 without proof.

Leuma 1: Two N customer DSOP's with parameters fakBkpk-l, 2 ,...,K} and

{clk, cBk k=1,2,...,K] respectively have the same optimal solution

provided c>O.

This device of rescaling a DSOP's parameters allows alternative

representations of (7) and (11). For (7) with c-N/(N-1) we get

ak = N(ck+Bk)/(N-l), Ok = Sk  (7')

For (11) with c-2N/(N-Z) we get

k - 2N(ak+ok)/(-l), Ok - k (11')

Using (7') and (11'), BCMS and CMSE solutions can be found by solving a
I I

DSOP with revised aks but original Bks. Theorem 2 compares solutions of

2 DSOP's which differ in this manner.

Theorem 2: Let (n 1 1 n2 ,...,n K) solve the revised DSOP with parameters
,I , I 1+

,, and ,2..,K . Then if nk [, -k ] 12 Bk

nk>n k <-> ak-ok<A -A and ak<A (14)
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Proof: From (12) and - 'A -ok1 /20k

k k

<"n> A -Qk>A, -k and A,-t>

<=n> aa<,-A, and 1k<),

Comparing the original DSOP solution to the BCMS solution found

using (7'), (14) becomes

k6 k

T k>n <n> [N(<k>Bk)/(-1) - k< - and N(k+k)/(N-l)<A

<<> < -)(N-l) and k+Bk<(l) .and '/

Thus the BcMS solution has a higher average number of customers on route

k k k is sufficiently small. From (2),

< tk<NBk-Tk (- a) ak/ 2 .

Comparing the DSOP solution to the BCSE solution found using (11'),

(14) becomes

nk>n k  /(N-1)-Qk and 2 N(ck+Bk)/(N-)<

<=> (I+)k+2 Bk<(N-1) (a-Ad) and Ik+8 k<(N-1) /2N.
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Thus the CMSE solution has a higher average number of customers on route

k than the DSOP solution when (N+l)mk+2N Bk or equivalently ak+2N k/(N+l)

is sufficiently small. From (2):

%+2N k/(N+l) - Tk+(N-l)ak/2(N+). (15)

Comparing the BCMS solution to the CMSE solution in the same manner

yields

Xk>Xk <w> nk>n k  <=> 'k+k < constant and nk>O

From (2), axk+Bk-Tk, exactly the expected travel time for route k in the

absence of congestion. Customers acting in their own interest have a

tendency to overload routes which are fastest in the absence of conges-

tion when compared to the BCMS solution. Since in most practical examples

Tk>>ak routes with sufficiently small Tk are likely to also have suffi-

ciently small Tk+(N-l)ak/2(N+). Thus from (15) the same routes will

often be overloaded by individuals in comparison to the original DSOP

solution; this fact is also suggested by the limited computational

evidence in Table 1 where there is little difference between DSOP and

BCMS solutions.

4. Modifying the Arrival Assumption

Although conuters typically wish to gain access to a route system

at epochs which lie in a relatively short time interval, our assumption
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that all customers arrive at the same instant is at bt. an approximation.

First, we state sufficient conditions on modified arrival assumptions to

guarantee that the DSOP solution under instantaneous arrival remains

nearly optimal. Later, additional sufficient conditions will be stated

for the mixed strategy problems. Throughout this section we view each

of the K facilities as a single server model as in Figure 2; service

times may be stochastic.

Let (n,n2,...,n) solve the original instantaneous arrival DSOP

yielding optimal total wait W - E ((Tk-O.5ak)n +.5akn k }. Assuming
k-l

that all customers arrive at time 0, let DlD 2,...,DK be the (possibly

random) times at which the last customer departs servers 1,2,...,K

respectively. (If nk=0, then Dk=0.) Now consider a modified arrival

process in which the first arrival occurs at time 0. Using (n1 ,n2,...,nK)

and any particular sequential assiSnzent of customers to servers, let

DI,D2,...,DK be the times at which the last customer departs servers

1,2,...,K respectively. Then we can state and prove Theorem 3.

Theorem 3: If c E nE(Dk-Dkl, then (nln 2 ,...,n K) yields an expected
k-l

total wait which is c - optimal for the DSOP with modified arrival

process.

Proof: Let E1,E2 ,...,EN be the epochs at which customers 1,2,...,N are

served using (n,n2,...,nK) in the original problem. Then
N I I I

W = E E i Let El,E 2,...,. be the corresponding service completion
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epochs and AlA 2 ,...,AN the corresponding arrival epochs under the

modified arrival process assumption. Then W O expected total wait -

N, N
E{ E E I-E( Z A I. If customer i is assigned to route k, then

i=l i-i

N , N
E{E I-EE I}<E(D k}-E{D k} Thus O<E{ E E )-E{ Z E }<E and hencei- ki-i i-I

N
W <W+c-E{ Z Ai

Any other allocation (nln 2,...,n) with expected total wait W in
^t N

the original problem must have expected total wait W >W-E{ E A in the

modified problem. Thus W >W -c.

Theorem 3 admits any arrival process which does not significantly

inconvenience any server. For example, provided that we can guarantee

that each server will work without an idle period between services of

any two customers, E becomes E nkE{Ak} where Ak is the time that the

first customer is assigned to route k. (Ak-O if nk=O.) If, for

example, customers arrive at times (i-l)t, i-l,2,...,N and service

durations in every queue are constant and longer than Kt, then by assigning

the first K customers to queues 1,2,...,K in descending order of nk, we

can attain e<N(K-l)t/2. The average wait per customer is then within

(K-l)t/2 of optimal.

An analogue of Theorem 3 holds for the mixed strategy cases.

However, we must assume that a modified arrival process gives no customer

any information that can be used to advantage. Although customers may

be aware of the overall arrival process assumptions, they must be re-

stricted to choose a mixed strategy which is independent of their eventual

i ____ _____
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to the original instantaneous arrival model will be very close to optimal

provided conditions (1) and (2) directly above hold with very high

probability.

In the equilibrium case the average wait per customer on route k is
Nk , Nk

E E I } _ ( E A IN k) where Nk is the random number of customers
i-I il I

using route k and both quantities in braces are defined to be 0 when

Nk-O. Comparing the average waits per customer on routes k and m where

xk > 0 and xa > 0 (so that routes k and m are used) we first notice thatN N

E Ek Ai/NI k E{ Em A IN I Thus the difference between the average
i-1 i-l

wait per customer on route k and that on route m is
N ,N

E{ k E/N k } - E { Em E IN m
i-1 inl

Nk , N
" E{ Z Ei/N k - E{ Em Ei/Nm

i-1 i-1

N k N
" E{ E Ei/Nk} + E{DkDk} - E{ Zm E IN a

i-il i m

- E{Dk-Dk} (16)

By reversing the roles of k and m we can also show that
Nk , N , ,

E{ Z EI/Nk} - E{ ZD Ei/Nm} > - E{DmDIm (17)
inl , i-l ,

As long as E{D k-D k  and E{D m-D } are small there is little difference in

the average wait per customer between routes.

As an example of the magnitude of E consider the case with K-2,

N-O 3 ,T1OT2=15, exponential service with "u2u.='.06. By symmetry, the

DSOP solution is (500,500) and both mixed strategy solutions are (.5,.5).

In the absence of traffic the average commuter time is 15, in the DSOP

solution it is 29.97. If interarrival times are exponential with expected
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value 1.5xlO- 2 and all customers use the mixed strategy (.5,.5), then up

to time 30xl072 the number of arrivals in each system is Poisson (10).

Since the arrival rate in each system is 33.3 and the service rate 16.7,

each server is almost certain to be busy from time 15-.06/2+30x10
- 2

until his system is emptied. Thus E103 x30xlO-2=300 is conservative and

the average wait per customer is guaranteed by Theorem 3 to be within

0.3 of the optimal average wait, i.e. an error of less than one percent.
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Abstract

Each of N customers must select one of K commuter routes daily.

Each commuter route is represented as a series of M/D/l queuing stations

with fixed travel times between stations. In the basic model, all

customers arrive at the start of their selected route simultaneously;

results which are optimal for the basic model are shown to be nearly

optimal under a variety of more realistic arrival assumptions. In the

basic model, the total wait on route k on any day when nk customers use

2
it is shown to be a knk + Bknk.

For the basic model three solutions are found and compared: (1)

the deterministic social optimum, an assignment of individual customers

to routes minimizing total wait per day, (2) the best common mixed

strategy minimizing average total wait per day when customers' individual

average waits must all be equal and (3) the equilibrium common mixed

strategy that would be used by every customer acting in self-interest.

The three solutions differ systematically. Individuals using (3) use

routes k with lowa k + ak with higher frequency than in (2) or (1).

Since ak + ak is the total wait on route k if only one customer uses it,

self-interested individuals overload those routes which would be fastest

in the absence of congestion.
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